ΣΚΟΤΕΙΝΗ ΥΛΗ---ΣΚΟΤΕΙΝΗ ΕΝΕΡΓΕΙΑ
ΣΚΟΤΕΙΝΗ ΥΛΗ
Η σκοτεινή ύλη στην αστρονομία και στην κοσμολογία, είναι ένας υποθετικός τύπος ύλης που συνεισφέρει κατά μεγάλο ποσοστό στη συνολική μάζα του σύμπαντος. Η σκοτεινή ύλη δε μπορεί να παρατηρηθεί απευθείας από τηλεσκόπια. Προφανώς δεν εκπέμπει ούτε απορροφά φως ή άλλη ηλεκτρομαγνητική ακτινοβολία σε σημαντικό βαθμό. Αντίθετα, η ύπαρξη και οι ιδιότητές της βασίζονται στις βαρυτικές επιδράσεις πάνω στην ορατή ύλη, στην ακτινοβολία και τη μεγάλης κλίμακας δομή του σύμπαντος. Σύμφωνα με την ερευνητική αποστολή Planck και πάνω στη βάση του Καθιερωμένου Προτύπου (Standard Model of Cosmology), η συνολική υλοενέργεια (ύλη-ενέργεια) του σύμπαντος περιέχει 4,9% συνηθισμένη ύλη, 26,8% σκοτεινή ύλη και 68,3% σκοτεινή ενέργεια . Συνεπώς, η σκοτεινή ύλη υπολογίζεται ότι συνεισφέρει κατά 84,5% στη συνολική ύλη και κατά 26,8% στο συνολικό περιεχόμενο του σύμπαντος .
(Wikipedia)
February 20, 2014
Source:
Brown University
Summary:
A new calibration of the Large Underground Xenon dark matter detector brought a 10-fold increase in calibration accuracy, confirming findings announced last October from the instrument's first 90-day run. If low-mass 'WIMP' particles had passed through the detector, Large Underground Xenon would have found them. Dark matter is thought to account for about 80 percent of the mass of the universe. Though it has not yet been detected directly, its existence is a near certainty among physicists.
Η σκοτεινή ύλη δεν είναι τελικά τόσο σκοτεινή
15.04.2015
Η σκοτεινή ύλη δεν είναι τελικά τόσο σκοτεινή και αλληλοεπιδρά με τον εαυτό της μέσω μιας άλλης, άγνωστης, δύναμης, πέρα από τη βαρύτητα, υποστηρίζει τώρα η επιστήμη.
Οι παρατηρήσεις συγκρούσεων γαλαξιών, οι οποίες έγιναν με το Πολύ Μεγάλο Τηλεσκόπιο του Ευρωπαϊκού Νοτίου Αστεροσκοπείου (ESO) στη Χιλή και του αμερικανο-ευρωπαϊκού διαστημικού τηλεσκοπίου «Χαμπλ» φωτίζουν για πρώτη φορά τη φύση της μυστηριώδους σκοτεινής ύλης, που ονομάστηκε έτσι επειδή δεν αλληλοεπιδρά καθόλου με το φως και την ορατή ύλη.
Κάθε γαλαξίας συνοδεύεται από τη δική του σκοτεινή ύλη. Από σκοτεινή ύλη αποτελείται περίπου το ένα τέταρτο του σύμπαντος, ενώ αυτή, αποτελεί την «κόλλα» που συγκρατεί τους γαλαξίες για να μην διαλυθούν.
Σύμφωνα με μια εκτίμηση, το 5% της συνολικής ύλης/ενέργειας του σύμπαντος είναι ορατή συμβατική ύλη, το 27% σκοτεινή ύλη και το υπόλοιπο 68% η ακόμη πιο μυστηριώδης σκοτεινή ενέργεια. Καθαρά σε επίπεδο ύλης (μάζας) του σύμπαντος, το 85% περίπου είναι σκοτεινή
Αστρονόμοι από διάφορες χώρες, με επικεφαλής τον Ρίτσαρντ Μάσεϊ του Ινστιτούτου Κοσμολογίας του βρετανικού πανεπιστημίου του Ντέραμ, συμπέραναν ότι, ως συνέπεια των γαλαξιακών συγκρούσεων, η σκοτεινή ύλη φαίνεται να επιβραδύνεται και να εμφανίζει μια αυξημένη απόσταση της τάξεως των 5.000 ετών φωτός από τον αντίστοιχο γαλαξία της.
Αυτό θεωρητικά μπορεί να εξηγηθεί αν, καθώς συγκρούονται οι γαλαξίες, οι αντίστοιχες σκοτεινές ύλες τους αλληλοεπιδρούν, έστω και λίγο (η αλληλεπίδραση γίνεται με κάποιον «εξωτικό» άγνωστο τρόπο). Εφόσον αυτό όντως συμβαίνει, τότε για πρώτη φορά παρατηρήθηκε η σκοτεινή ύλη να αντιδρά σε μια άλλη δύναμη (με μια άλλη σκοτεινή ύλη) πέρα από τη δύναμη της βαρύτητας.
Οι επιστήμονες δήλωσαν ότι χρειάζονται πάντως περισσότερες αστρονομικές παρατηρήσεις και προσομοιώσεις σε υπολογιστές για να βεβαιωθούν γι' αυτό που είδαν.
(Ειδήσεις από το διαδίκτυο τής 15-4-2015)
First signs of self-interacting dark matter? Dark matter may not be completely dark after all
Date:
April 14, 2015
Source:
European Southern Observatory - ESO
Summary:
For the first time dark matter may have been observed interacting with other dark matter in a way other than through the force of gravity. Observations of colliding galaxies have picked up the first intriguing hints about the nature of this mysterious component of the Universe.
This image from the NASA/ESA Hubble Space Telescope shows the rich galaxy cluster Abell 3827. The strange pale blue structures surrounding the ...
For the first time dark matter may have been observed interacting with other dark matter in a way other than through the force of gravity. Observations of colliding galaxies made with ESO's Very Large Telescope and the NASA/ESA Hubble Space Telescope have picked up the first intriguing hints about the nature of this mysterious component of the Universe.
Using the MUSE instrument on ESO's VLT in Chile, along with images from Hubble in orbit, a team of astronomers studied the simultaneous collision of four galaxies in the galaxy cluster Abell 3827. The team could trace out where the mass lies within the system and compare the distribution of the dark matter with the positions of the luminous galaxies.
Although dark matter cannot be seen, the team could deduce its location using a technique called gravitational lensing. The collision happened to take place directly in front of a much more distant, unrelated source. The mass of dark matter around the colliding galaxies severely distorted spacetime, deviating the path of light rays coming from the distant background galaxy -- and distorting its image into characteristic arc shapes.
Our current understanding is that all galaxies exist inside clumps of dark matter. Without the constraining effect of dark matter's gravity, galaxies like the Milky Way would fling themselves apart as they rotate. In order to prevent this, 85 percent of the Universe's mass [1] must exist as dark matter, and yet its true nature remains a mystery.
In this study, the researchers observed the four colliding galaxies and found that one dark matter clump appeared to be lagging behind the galaxy it surrounds. The dark matter is currently 5000 light-years (50,000 million million kilometres) behind the galaxy -- it would take NASA's Voyager spacecraft 90 million years to travel that far.
A lag between dark matter and its associated galaxy is predicted during collisions if dark matter interacts with itself, even very slightly, through forces other than gravity [2]. Dark matter has never before been observed interacting in any way other than through the force of gravity.
Lead author Richard Massey at Durham University, explains: "We used to think that dark matter just sits around, minding its own business, except for its gravitational pull. But if dark matter were being slowed down during this collision, it could be the first evidence for rich physics in the dark sector -- the hidden Universe all around us."
The researchers note that more investigation will be needed into other effects that could also produce a lag. Similar observations of more galaxies, and computer simulations of galaxy collisions will need to be made.
Team member Liliya Williams of the University of Minnesota adds: "We know that dark matter exists because of the way that it interacts gravitationally, helping to shape the Universe, but we still know embarrassingly little about what dark matter actually is. Our observation suggests that dark matter might interact with forces other than gravity, meaning we could rule out some key theories about what dark matter might be."
This result follows on from a recent result from the team which observed 72 collisions between galaxy clusters [3] and found that dark matter interacts very little with itself. The new work however concerns the motion of individual galaxies, rather than clusters of galaxies. Researchers say that the collision between these galaxies could have lasted longer than the collisions observed in the previous study -- allowing the effects of even a tiny frictional force to build up over time and create a measurable lag [4].
Taken together, the two results bracket the behaviour of dark matter for the first time. Dark matter interacts more than this, but less than that. Massey added: "We are finally homing in on dark matter from above and below -- squeezing our knowledge from two directions."
Notes
[1] Astronomers have found that the total mass/energy content of the Universe is split in the proportions 68% dark energy, 27% dark matter and 5% "normal" matter. So the 85% figure relates to the fraction of "matter" that is dark.
[2] Computer simulations show that the extra friction from the collision would make the dark matter slow down. The nature of that interaction is unknown; it could be caused by well-known effects or some exotic unknown force. All that can be said at this point is that it is not gravity.
All four galaxies might have been separated from their dark matter. But we happen to have a very good measurement from only one galaxy, because it is by chance aligned so well with the background, gravitationally lensed object. With the other three galaxies, the lensed images are further away, so the constraints on the location of their dark matter too loose to draw statistically significant conclusions.
[3] Galaxy clusters contain up to a thousand individual galaxies.
[4] The main uncertainty in the result is the timespan for the collision: the friction that slowed the dark matter could have been a very weak force acting over about a billion years, or a relatively stronger force acting for "only" 100 million years.
Story Source:
The above story is based on materials provided by European Southern Observatory - ESO. Note: Materials may be edited for content and length.
Scientists have captured the early death throes of supernovae for the first time and found that the universe's benchmark explosions are much more varied than expected.
The scientists used the Kepler space telescope to photograph three type 1a supernovae in the earliest stages of ignition. They then tracked the explosions in detail to full brightness around three weeks later, and the subsequent decline over the next few months.
They found the initial stages of a supernova explosion did not fit with the existing theories.
"The stars all blow up uniquely. It doesn't make sense," said Dr Brad Tucker from The Australian National University (ANU).
"It's particularly weird for these supernovae because even though their initial shockwaves are very different, they end up doing the same thing."
Before this study, the earliest type 1a supernovae had been glimpsed was more than 2.5 hours after ignition, after which the explosions all followed an identical pattern.
This led astronomers to theorise that supernovae, the brilliant explosions of dying stars, all occurred through an identical process.
Astronomers had thought supernovae all happened when a dense star steadily sucked in material from a large nearby neighbour until it became so dense that carbon in the star's core ignited.
"Somewhat to our surprise the results suggest an alternative hypothesis, that a violent collision between two smallish white dwarf stars sets off the explosion," said lead researcher Dr Robert Olling, from the University of Maryland in the United States.
At the peak of their brightness, supernovae are brighter than the billions of stars in their galaxy. Because of their brightness, astronomers have been able to use them to calculate distances to distant galaxies.
Measurements of distant supernovae led to the discovery that some unknown force, now called dark energy, is causing the accelerated expansion of the universe. Brian Schmidt from the ANU, Saul Perlmutter (Berkeley) and Adam Reiss (Johns Hopkins) were awarded the Nobel prize in 2011 for this discovery.
Dr Tucker said the new results did not undermine the discovery of dark energy.
"The accelerating universe will not now go away -- they will not have to give back their Nobel prizes," he said.
"The new results will actually help us to better understand the physics of supernovae, and figure out what is this dark energy that is dominating the universe."
Story Source:
The above story is based on materials provided by Australian National University. Note: Materials may be edited for content and length.
Dark matter. Dinosaurs. Few topics are as effective at grabbing the attention of science enthusiasts. But Lisa Randall doesn’t just muse about these topics for their popular appeal. The accomplished particle physicist’s latest book, Dark Matter and the Dinosaurs, draws on her 2014 study positing that mysterious invisible matter permeating the cosmos can dislodge comets from their orbits and trigger the kind of impact that wiped out T. rex and friends.
If that seems like a wild proposition, Randall admits that it is: “I’ll tell you right up front that I don’t yet know if this idea is correct,” she writes. Yet she also knows that it is a compelling hook to reel readers in as she focuses the book on communicating the broader science behind her idea. If you really want to know how something as intangible as dark matter, which has never been directly detected, could possibly upend the hierarchy of Earth’s life, then you need to learn a little cosmology, astronomy, geology and paleontology.
In describing fossils alongside the Big Bang, Randall explains how arcane-sounding concepts like inflation and orbital dynamics are integral to the emergence and history of life on Earth. Though dark matter might be to blame for mass extinctions, its gravitational influence also helped create the galactic conditions in which life could arise. Randall’s simple explanations, interspersed with anecdotes from her career, appeal even to the reader more in it for the extinctions than the physics.
The provocative proposal that led to the book, however, has holes. Randall suggests that every 35 million years or so, the solar system weaves through a thin but concentrated disk of dark matter in the Milky Way. The dark matter’s gravitational pull, while not strong enough to disturb planets or asteroids, jostles distant comets from their orbits and sends them toward the inner solar system. Unfortunately, scientists aren’t sure how the Milky Way’s dark matter is distributed, if the rate of impacts does in fact peak every 35 million years or whether the dinosaur-killing body was a comet or an asteroid.
Still, there’s plenty to get out of Dark Matter and the Dinosaurs even if the premise doesn’t hold up. It remains to be seen whether another scientist can one-up Randall with a theory connecting black holes and pandas.
Buy Dark Matter and the Dinosaurs from Amazon.com. Sales generated through the links to Amazon.com contribute to Society for Science & the Public's programs.
Further Reading
S. Schwartz. Giant asteroid may have triggered deadly volcano
(Science news Internet 4-1-2016)
------------------
(Internet 15-3-2017)
We see normal matter as brightly shining stars, glowing gas and clouds of dust. But the more elusive dark matter does not emit, absorb or reflect light and can only be observed via its gravitational effects. The presence of dark matter can explain why the outer parts of nearby spiral galaxies rotate more quickly than would be expected if only the normal matter that we can see directly were present.
Now, an international team of astronomers led by Reinhard Genzel at the Max Planck Institute for Extraterrestrial Physics in Garching, Germany have used the KMOS and SINFONI instruments at ESO's Very Large Telescope in Chile to measure the rotation of six massive, star-forming galaxies in the distant Universe, at the peak of galaxy formation 10 billion years ago.
What they found was intriguing: unlike spiral galaxies in the modern Universe, the outer regions of these distant galaxies seem to be rotating more slowly than regions closer to the core -- suggesting there is less dark matter present than expected.
"Surprisingly, the rotation velocities are not constant, but decrease further out in the galaxies," comments Reinhard Genzel, lead author of the Nature paper.
"There are probably two causes for this.
Firstly, most of these early massive galaxies are strongly dominated by normal matter, with dark matter playing a much smaller role than in the Local Universe.
Secondly, these early discs were much more turbulent than the spiral galaxies we see in our cosmic neighbourhood."
Both effects seem to become more marked as astronomers look further and further back in time, into the early Universe. This suggests that 3 to 4 billion years after the Big Bang , the gas in galaxies had already efficiently condensed into flat, rotating discs, while the dark matter halos surrounding them were much larger and more spread out. Apparently it took billions of years longer for dark matter to condense as well, so its dominating effect is only seen on the rotation velocities of galaxy discs today.
This explanation is consistent with observations showing that early galaxies were much more gas-rich and compact than today's galaxies.
The six galaxies mapped in this study were among a larger sample of a hundred distant, star-forming discs imaged with the KMOS and SINFONI instruments at ESO's Very Large Telescope at the Paranal Observatory in Chile. In addition to the individual galaxy measurements described above, an average rotation curve was created by combining the weaker signals from the other galaxies. This composite curve also showed the same decreasing velocity trend away from the centres of the galaxies. In addition, two further studies of 240 star forming discs also support these findings.
Detailed modelling shows that while normal matter typically accounts for about half of the total mass of all galaxies on average, it completely dominates the dynamics of galaxies at the highest redshifts.
________________________________________
Dark Matter in early galaxies was present only in tiny amounts
It may seem like we’ve got the universe pretty much figured out. We have a relatively good idea about how it started and how it is evolving. We’ve sent probes to neighbouring planets, discovered an increasing number of exoplanets and are cataloguing the family tree of galaxies. The Conversation
But there is some pretty basic stuff that we just don’t have a clue about – such as what the vast majority of the cosmos is actually made of. For example, for all the matter we can see in the universe, there is at least five times more invisible material called “dark matter”. We know it is there because of the gravitational pull it has on surrounding matter. The matter we can see in a galaxy or galaxy cluster, such as stars, isn’t enough to hold it together by gravity alone, meaning some “dark” material must be lurking there, too.
So far, we have not been able to work out what this substance is and where it came from. And now our new study, published in Nature, is making the matter even more confusing by suggesting that in early galaxies it was present only in tiny amounts.
Galaxy puzzle
Much of astronomy is the study of a battle against gravity. Stars shine so as not to succumb to gravitational collapse under their own weight. The Milky Way rotates as a means of supporting itself against gravity. Some more massive galaxies show less or no coherent rotation, but they feature random motions to balance gravity. This is why measuring the movement of galaxies is an efficient way to determine the amount of gravitational pull – or the total mass present within a certain area of space.
This year marked the passing of one of the pioneers of galaxy dynamics, Vera Rubin. She discovered that the outer regions of nearby spiral galaxies spin just as fast as the regions near the centre. This contributed greatly to our modern-day picture of dark matter in the universe. When rotational velocities stay high far away from the central regions of nearby spiral galaxies – where most of the stars reside – this provides a direct clue that dark matter is there. In fact, scientists believe that each galaxy has a “dark matter halo” that envelops its disc.
Dark matter seems to be hiding in our own Milky Way galaxy.
Bruno Gilli/ESO –, CC BY-SA
Forty years on, and powerful instruments on the European Very Large Telescope now allow us to probe extremely distant galaxies: those at the peak epoch of galaxy formation 10 billion years ago. Not only that, by taking deep exposures we can probe the motions of gas all the way out to the outer disk regions of the galaxy.
My colleagues at the Max Planck Institute for Extraterrestrial Physics and I were able to extract the individual rotation curves of six ancient galaxies. And for another 100 galaxies, we managed to combine their measurements into an average curve. Both approaches yielded the same surprising result: in early disk galaxies, the rotation of the outer parts decreases steadily – suggesting there is little or no dark matter there to speed things up.
The role of dark matter halos
So how can we explain the findings? Well, we know that there was a lot of gas present in these early galaxies, constantly flowing in from the intergalactic medium. These gas reservoirs make ordinary matter effectively sink to the centres of the dark matter halos that host them, piling up.
A simulation of what a dark matter halo might look like, with a galaxy at the dense centre. There are also many satellite galaxies, each with its own subhalo which is visible as a region of high dark matter density in the image.
wikipedia
It could also be that during these early times the dark matter halos were growing rapidly and were not yet in equilibrium. This means that the odds that galaxies could form in regions of lower dark matter concentration were higher.
Cosmic time scales are long. Mapping the evolutionary paths of galaxies throughout the history of the universe requires piecing together snapshots of their lives, as observed at different epochs. Undoubtedly, our new findings will add a valuable piece to this puzzle. What we can say for now is that the disk galaxies we observed three billion years after the Big Bang are markedly different compared to Milky Way type galaxies today.
But it’s important to remember that when comparing these ancient galaxies to ones ten billion years later, one should also take into account that new stars will be formed in the meantime. In the search for descendant galaxies, it therefore seems more relevant to look at modern galaxies that are more massive than the Milky Way. Those are often spheroidal in shape (they lack spiral arms). Interestingly, their dynamics also point at low dark matter concentrations.
Looking ahead, we want to uncover the physics behind such evolution, and explore how our findings can inform the theory on how normal and dark matter interact. Perhaps it could even help us to answer the biggest question of all: what dark matter really is.
Stijn Wuyts, Senior Lecturer of Physics, University of Bath
This article was originally published on The Conversation. Read the original article.
Dark matter Galaxy space Universe
(Internet 18-3-2017)
Dark Matter in early galaxies was present only in tiny amounts
It may seem like we’ve got the universe pretty much figured out. We have a relatively good idea about how it started and how it is evolving. We’ve sent probes to neighbouring planets, discovered an increasing number of exoplanets and are cataloguing the family tree of galaxies. The Conversation
But there is some pretty basic stuff that we just don’t have a clue about – such as what the vast majority of the cosmos is actually made of. For example, for all the matter we can see in the universe, there is at least five times more invisible material called “dark matter”. We know it is there because of the gravitational pull it has on surrounding matter. The matter we can see in a galaxy or galaxy cluster, such as stars, isn’t enough to hold it together by gravity alone, meaning some “dark” material must be lurking there, too.
So far, we have not been able to work out what this substance is and where it came from. And now our new study, published in Nature, is making the matter even more confusing by suggesting that in early galaxies it was present only in tiny amounts.
Galaxy puzzle
Much of astronomy is the study of a battle against gravity. Stars shine so as not to succumb to gravitational collapse under their own weight. The Milky Way rotates as a means of supporting itself against gravity. Some more massive galaxies show less or no coherent rotation, but they feature random motions to balance gravity. This is why measuring the movement of galaxies is an efficient way to determine the amount of gravitational pull – or the total mass present within a certain area of space.
This year marked the passing of one of the pioneers of galaxy dynamics, Vera Rubin. She discovered that the outer regions of nearby spiral galaxies spin just as fast as the regions near the centre. This contributed greatly to our modern-day picture of dark matter in the universe. When rotational velocities stay high far away from the central regions of nearby spiral galaxies – where most of the stars reside – this provides a direct clue that dark matter is there. In fact, scientists believe that each galaxy has a “dark matter halo” that envelops its disc.
Dark matter seems to be hiding in our own Milky Way galaxy.
Bruno Gilli/ESO –, CC BY-SA
Forty years on, and powerful instruments on the European Very Large Telescope now allow us to probe extremely distant galaxies: those at the peak epoch of galaxy formation 10 billion years ago. Not only that, by taking deep exposures we can probe the motions of gas all the way out to the outer disk regions of the galaxy.
My colleagues at the Max Planck Institute for Extraterrestrial Physics and I were able to extract the individual rotation curves of six ancient galaxies. And for another 100 galaxies, we managed to combine their measurements into an average curve. Both approaches yielded the same surprising result: in early disk galaxies, the rotation of the outer parts decreases steadily – suggesting there is little or no dark matter there to speed things up.
The role of dark matter halos
So how can we explain the findings? Well, we know that there was a lot of gas present in these early galaxies, constantly flowing in from the intergalactic medium. These gas reservoirs make ordinary matter effectively sink to the centres of the dark matter halos that host them, piling up.
A simulation of what a dark matter halo might look like, with a galaxy at the dense centre. There are also many satellite galaxies, each with its own subhalo which is visible as a region of high dark matter density in the image.
wikipedia
It could also be that during these early times the dark matter halos were growing rapidly and were not yet in equilibrium. This means that the odds that galaxies could form in regions of lower dark matter concentration were higher.
Cosmic time scales are long. Mapping the evolutionary paths of galaxies throughout the history of the universe requires piecing together snapshots of their lives, as observed at different epochs. Undoubtedly, our new findings will add a valuable piece to this puzzle. What we can say for now is that the disk galaxies we observed three billion years after the Big Bang are markedly different compared to Milky Way type galaxies today.
But it’s important to remember that when comparing these ancient galaxies to ones ten billion years later, one should also take into account that new stars will be formed in the meantime. In the search for descendant galaxies, it therefore seems more relevant to look at modern galaxies that are more massive than the Milky Way. Those are often spheroidal in shape (they lack spiral arms). Interestingly, their dynamics also point at low dark matter concentrations.
Looking ahead, we want to uncover the physics behind such evolution, and explore how our findings can inform the theory on how normal and dark matter interact. Perhaps it could even help us to answer the biggest question of all: what dark matter really is.
Stijn Wuyts, Senior Lecturer of Physics, University of Bath
This article was originally published on The Conversation. Read the original article.
Dark matter Galaxy space Universe
(Internet 18-3-2017)
Μέχρι στιγμής δεν έχει επιβεβαιωθεί πειραματικώς η ύπαρξη σκοτεινής ύλης
(Τα σχετικά πειράματα δεν ευνοούν μιά τέτοια παραδοχή)
Is Dark Matter Real?
By Don Lincoln, Senior Scientist, Fermi National Accelerator Laboratory; Adjunct Professor of Physics, University of Notre Dame | July 16, 2017 09:08am ET
Credit: Valerio Pardi/Shutterstock
Don Lincoln is a senior scientist at the U.S. Department of Energy's Fermilab, America's largest Large Hadron Collider research institution. He also writes about science for the public, including his recent "The Large Hadron Collider: The Extraordinary Story of the Higgs Boson and Other Things That Will Blow Your Mind" (Johns Hopkins University Press, 2014). You can follow him on Facebook. Lincoln contributed this article to Live Science's Expert Voices: Op-Ed & Insights.
Many science-savvy people take it for granted that the universe is made not only of Carl Sagan's oft-quoted "billions and billions" of galaxies, but also a vast amount of an invisible substance called dark matter. This odd matter is thought to be a new kind of subatomic particle that doesn't interact via electromagnetism, nor the strong and weak nuclear forces. Dark matter is also supposed to be five times more prevalent in the universe than the ordinary matter of atoms.
However, the reality is that dark matter's existence has not yet been proved. Dark matter is still a hypothesis, albeit a rather well-supported one. Any scientific theory has to make predictions, and if it's right, then the measurements you do should line up with the predictions. The same goes for dark matter. For instance, dark matter theories make predictions for how fast galaxies are rotating. But, until now, measurements made of the detailed dark matter distribution at the center of low mass galaxies didn't line up with those predictions.
Μέχρι στιγμής δεν έχει επιβεβαιωθεί πειραματικώς η ύπαρξη σκοτεινής ύλης
(Τα σχετικά πειράματα δεν ευνοούν μιά τέτοια παραδοχή)
Is Dark Matter Real?
By Don Lincoln, Senior Scientist, Fermi National Accelerator Laboratory; Adjunct Professor of Physics, University of Notre Dame | July 16, 2017 09:08am ET
Credit: Valerio Pardi/Shutterstock
Don Lincoln is a senior scientist at the U.S. Department of Energy's Fermilab, America's largest Large Hadron Collider research institution. He also writes about science for the public, including his recent "The Large Hadron Collider: The Extraordinary Story of the Higgs Boson and Other Things That Will Blow Your Mind" (Johns Hopkins University Press, 2014). You can follow him on Facebook. Lincoln contributed this article to Live Science's Expert Voices: Op-Ed & Insights.
Many science-savvy people take it for granted that the universe is made not only of Carl Sagan's oft-quoted "billions and billions" of galaxies, but also a vast amount of an invisible substance called dark matter. This odd matter is thought to be a new kind of subatomic particle that doesn't interact via electromagnetism, nor the strong and weak nuclear forces. Dark matter is also supposed to be five times more prevalent in the universe than the ordinary matter of atoms.
However, the reality is that dark matter's existence has not yet been proved. Dark matter is still a hypothesis, albeit a rather well-supported one. Any scientific theory has to make predictions, and if it's right, then the measurements you do should line up with the predictions. The same goes for dark matter. For instance, dark matter theories make predictions for how fast galaxies are rotating. But, until now, measurements made of the detailed dark matter distribution at the center of low mass galaxies didn't line up with those predictions.
--------------------------------------------------
ΣΚΟΤΕΙΝΗ ΕΝΕΡΓΕΙΑ
Στη φυσική κοσμολογία και την αστρονομία, η σκοτεινή ενέργεια είναι ένα υποθετικό είδος ενέργειας που εκτείνεται παντού στο σύμπαν και τείνει να επιταχύνει τη διαστολή του.. Η σκοτεινή ενέργεια είναι η πιο αποδεκτή υπόθεση για να εξηγήσει παρατηρήσεις από το 1990 και έπειτα που δείχνουν ότι το σύμπαν διαστέλλεται με επιταχυνόμενο ρυθμό. Σύμφωνα με δεδομένα από το διαστημικό παρατηρητήριο Planck, και βασιζόμενοι στο Καθιερωμένο Πρότυπο της κοσμολογίας, η συνολική ύλη-ενέργεια του σύμπαντος φαίνεται να περιέχει 4,9% συνήθη ύλη, 26,8% σκοτεινή ύλη και 68,3% σκοτεινή ενέργεια.
24/01/2017
Η ΣΚΟΤΕΙΝΗ ΕΝΕΡΓΕΙΑ ΚΑΙ Η ΑΝΑΠΑΝΤΕΧΗ ΔΙΑΣΤΟΛΗ ΤΟΥ ΣΥΜΠΑΝΤΟΣ
Η σκοτεινή ενέργεια είναι μια ιδιότητα του κενού χώρου, η οποία επιτρέπεται να υπάρχει από τη Γενική Θεωρία της Σχετικότητας του Αϊνστάιν, και που λειτουργεί ως μια μεγάλη, αρνητική πίεση, αναγκάζοντας έτσι το σύμπαν να διαστέλλεται με ένα όλο και πιο γρήγορα ρυθμό. Η ύπαρξή του έχει προταθεί για να εξηγήσει τις παρατηρήσεις που δείχνουν ότι η διαστολή του Σύμπαντος επιταχύνεται. Οι πιο πρόσφατες παρατηρήσεις από το δορυφόρο Planck (μια αποστολή της Ευρωπαϊκής Υπηρεσίας Διαστήματος) δείχνουν ότι το 68,3% της υλο-ενέργειας του σύμπαντος έχει τη μορφή της σκοτεινής ενέργειας. Ένα επιπλέον 26,8% αποτελείται από σκοτεινή ύλη, ενώ το υπόλοιπο 4,9% είναι συνηθισμένη ύλη.
faq-expansion-history
Η σκοτεινή ενέργεια άρχισε να κυριαρχεί στο σύμπαν, περίπου, 5 δισεκατομμύρια χρόνια πριν, όταν δηλαδή άρχισε να επιταχύνεται η διαστολή του Σύμπαντος. dark_energy_proportionΟι αναλογίες της σκοτεινής ενέργειας, της σκοτεινής ύλης και της κανονικής βαρυονικής ύλης στο σύμπαν, σύμφωνα με τις τελευταίες παρατηρήσεις
Η ακριβής φύση της σκοτεινής ενέργειας δεν έχει ακόμη καθοριστεί. Ωστόσο, η σκοτεινή ενέργεια πιστεύεται ότι είναι εξαιρετικά ομοιογενής (ομοιόμορφα κατανεμημένη σε όλο το χώρο) με μια πολύ χαμηλή πυκνότητα, περίπου 6.9 × 10-29 kg ανά κυβικό μέτρο. Η τομή αυτή είναι πολύ μικρότερη από την πυκνότητα της συνηθισμένης ύλης ή ενέργειας, στον Γαλαξία μας και γι αυτό την καθιστά πιθανώς μη ανιχνεύσιμη σε εργαστηριακά πειράματα.
Έχουν δε προταθεί διάφορα μοντέλα για την σκοτεινή ενέργεια, σμπεριλαμβανομένου ενός κοσμικού πεδίου που σχετίζεται με τον πληθωρισμό, ένα διαφορετικό, πεδίο χαμηλής ενέργειας που ονομάζεται πεμπτουσία και η κοσμολογική σταθερά Λ, ή ενέργεια του κενού του κενού χώρου. Σε αντίθεση με τον διάσημο παράγοντα Λ του Αϊνστάιν, η κοσμολογική σταθερά στην παρούσα ενσάρκωσή της δεν ισορροπεί την βαρύτητα προκειμένου να διατηρηθεί ένα στατικό σύμπαν. Αντιθέτως, έχει αρνητική πίεση που αναγκάζει την διαστολή να επιταχυνθεί.
Τα μυστήρια της σκοτεινής ενέργειας και ύλης
Η βαρύτητα που δρα σε τεράστιες αποστάσεις, δεν φαίνεται να μπορεί εξηγήσει αυτό που βλέπουν οι αστρονόμοι
Οι γαλαξίες, για παράδειγμα, θα πρέπει να είχαν διαλυθεί με την μάζα που έχουν. Άρα κάποια άλλη μάζα πρέπει να είναι εκεί που τους συγκρατεί
Οι αστροφυσικοί γι αυτό θεωρούν αναγκαία την παρουσία της "σκοτεινής ύλης" – μιας αόρατης σε μας, αλλά σαφώς που ενεργεί σε γαλαξιακές κλίμακες
Σε μεγαλύτερες αποστάσεις, όπως βρήκαν οι νομπελίστες, η διαστολή του Σύμπαντος επιταχύνεται
Έτσι έχουμε και τη "σκοτεινή ενέργεια" η οποία είναι αιτία της διαστολής, σε αντίθεση με τη βαρύτητα
Η τρέχουσα θεωρία υποστηρίζει ότι το 70% του σύμπαντος είναι σκοτεινή ενέργεια, το 25% είναι σκοτεινή ύλη, και μόλις το 5% το είδος της ύλης που γνωρίζουμε καλά
Ανακάλυψη της σκοτεινής ενέργειας
Μέχρι τα τέλη της δεκαετίας του 1990, οι αστρονόμοι ήταν πεπεισμένοι ότι η διαστολή του Σύμπαντος θα έπρεπε να επιβραδύνεται: θα μπορούσε να επιβραδύνεται και τελικά να αντιστραφεί εάν η συνολική ενεργειακή πυκνότητα ήταν αρκετά υψηλή, ή θα μπορούσε να επιβραδύνεται, αλλά αυτό να συνεχίζεται για πάντα. Είναι αλήθεια ότι καμία επιβράδυνση δεν είχε παρατηρηθεί, αλλά αυτή η υπόθεση φαινόταν λογική, δεδομένου ότι η βαρύτητα ήταν η μόνη σημαντική δύναμη που είναι γνωστή ότι δρα σε κοσμικές αποστάσεις.
Στη συνέχεια, το 1998, ανακοινώθηκε μια αναπάντεχη ανακάλυψη. Οι παρατηρήσεις των απομακρυσμένων σουπερνόβα από το διαστημικό τηλεσκόπιο Hubble έδειξε ότι, πριν από δισεκατομμύρια χρόνια, το Σύμπαν διαστελλόταν πιο αργά από ό, τι κάνει σήμερα. Προς έκπληξη όλων η ταχύτητα με την οποία επεκτείνεται το σύμπαν έχει μεγαλώσει – ένα γεγονός που θα μπορούσε να εξηγηθεί μόνο αν υπήρχε ένα – προηγουμένως – άγνωστο φαινόμενο που δρα έτσι ώστε να αναγκάζει το σύμπαν να διαστέλλεται.
nobellaureates2011Σε τρεις ερευνητές, που βρίσκονται πίσω από την ανακάλυψη ότι η διαστολή του σύμπαντος επιταχύνεται, απονεμήθηκε το Νόμπελ Φυσικής του 2011. Πρόκειται για τους Αμερικανούς Saul Perlmutter και Adam Riess και τον Brian Schmidt της Αυστραλίας.
Οι τρεις επιστήμονες υπολόγισαν σε νέα βάση τον ρυθμό διαστολής του σύμπαντος στο μακρινό παρελθόν. Αντί να αναλύσουν τους μεταβλητούς Κηφείδες, όπως έκανε ο αστρονόμος Χαμπλ στη δεκαετία του 20, άρχιζαν να μελετούν τους υπερκαινοφανείς μακρινών γαλαξιών, μερικά δισεκατομμύρια έτη φωτός μακριά άρα και το φως τους είχε εκπεμφθεί δισεκατομμύρια έτη πριν.
Η ανακάλυψη της μυστηριώδους οντότητας, που είναι γνωστή ως σκοτεινή ενέργεια, προήλθε από τις παρατηρήσεις των σουπερνόβα τύπου Ia, χρησιμοποιώντας το διαστημικό τηλεσκόπιο Hubble αλλά και επίγεια τηλεσκόπια. Αυτές οι παρατηρήσεις έγιναν το 1997 από δύο ομάδες αστρονόμων: την High-Z Supernova Search Team και την Supernova Cosmology Team Οι σουπερνόβα τύπου Ia είναι οι εκρήξεις των λευκών νάνων που έχουν αποκτήσει νέο υλικό ρουφώντας το από ένα συνοδό του άστρο έως ότου επιτευχθεί η κρίσιμη μάζα στην οποία λαμβάνει χώρα η ανεξέλεγκτη πυρηνική έκρηξη. Η ακραία λαμπρότητα των εκρήξεων (πάνω από την λαμπρότητα ενός ολόκληρου γαλαξία), σε συνδυασμό με το γεγονός ότι ο ρυθμός με τον οποίο φωτίζει η έκρηξη δίνει το μέτρο της πραγματικής φωτεινότητά τους, κάνει τα σουπερνόβα τύπου Ia ένα ιδιαίτερα αποτελεσματικό πρότυπο – κερί, για τη μέτρηση της απόστασης μας από απομακρυσμένες γαλαξίες . Επιπλέον, οι ερυθρές μετατοπίσεις του φωτός από τα σούπερνοβα δείχνουν τις ταχύτητες της απομάκρυνσης των γαλαξιών μεταξύ τους μέσα στους οποίους εμφανίζονται και ως εκ τούτου το ρυθμό της διαστολής του σύμπαντος σε διάφορες κοσμικές εποχές.
Οι δύο ομάδες αστρονόμων προσπαθούσαν να ρίξουν φως στο ερώτημα αν το σύμπαν είναι κλειστό ή ανοικτό. Στην πρώτη περίπτωση, η πυκνότητα της ύλης πρέπει να είναι αρκετά υψηλή ώστε να αναγκάσει το σύμπαν να σταματήσει τελικά να διαστέλλεται και να αρχίσει να καταρρέει. Στην τελευταία αυτή περίπτωση, η διαστολή θα συνεχιστεί επ ‘αόριστον. Σε κάθε περίπτωση, οι ερευνητές περίμεναν να βρουν ότι ο ρυθμός της κοσμικής διαστολής ήταν μεγαλύτερος σε μεγαλύτερες αποστάσεις, κάτι που αντιστοιχεί σε παλαιότερες εποχές στο σύμπαν. Το γεγονός αυτό θα πρέπει να συμβαίνει εάν το μόνο πράγμα που θα επηρεάζει τον ρυθμό διαστολής, θα ήταν η αμοιβαία έλξη της βαρύτητας μεταξύ όλης της ύλης που περιέχει το σύμπαν. Ωστόσο, προς έκπληξη όλων, οι παρατηρήσεις τους έδειξαν, αντίθετα, ότι ο ρυθμός της κοσμικής διαστολής είναι μεγαλύτερος σήμερα από ότι ήταν στο παρελθόν. Κι αυτό θα μπορούσε να σημαίνει μόνο ένα πράγμα: ότι η βαρύτητα – δηλαδή η αμοιβαία έλξη όλης της ύλης στο σύμπαν – δεν είναι η μόνη που επηρεάζει όλο το φαινόμενο σε μια κοσμική κλίμακα. Θα πρέπει να υπάρχει μία άλλη αναπάντεχη ενέργεια, που έγινε γνωστή ως σκοτεινή ενέργεια, και η οποία θα έχει αναγκάσει το σύμπαν να διαστέλλεται με ένα συνεχώς αυξανόμενο ρυθμό.
Η κοσμολογική σταθερά του Αϊνστάιν
Αν και οι παρατηρήσεις των υπερκαινοφανών 1997 έδωσαν την πρώτη απόδειξη για την σκοτεινή ενέργεια, η ιδέα ότι κάτι άλλο αντιτίθεται στην βαρύτητα σε κοσμολογική κλίμακα, προτάθηκε αρχικά από τον Albert Einstein το 1917 με τη μορφή της κοσμολογικής σταθεράς του Λ. Ο Αϊνστάιν εισήγαγε την σταθερά Λ στις εξισώσεις της γενικής σχετικότητας, προκειμένου να βρει μια λύση στην οποία το σύμπαν δεν διαστέλλεται, ούτε συστέλλεται, διότι η επικρατούσα άποψη εκείνη την εποχή ήταν ότι το σύμπαν ήταν στατικό. Μετά την ανακάλυψη του διαστελλόμενου σύμπαντος λίγα χρόνια αργότερα, ο Αϊνστάιν είπε ότι η ανακάλυψη της κοσμολογικής σταθεράς Λ ήταν η «μεγαλύτερη γκάφα» της ζωής του. Ωστόσο, η ύπαρξη της σκοτεινής ενέργειας έχει πλέον καταστήσει σαφές ότι είναι πραγματική κάτι ανάλογο με την κοσμολογική σταθερά, κάτι που αντιτίθεται της βαρύτητας σε κοσμική κλίμακα.
(Wikipedia)
La matière noire résiste au génie des chercheurs
Les premiers résultats de la collaboration internationale Xenon 1 Tonne viennent d’être publiés : le détecteur le plus sensible au monde n’a pas saisi la mystérieuse particule. A moins que…
LE MONDE SCIENCE ET TECHNO | 21.05.2017 à 18h02 • Mis à jour le 22.05.2017 à 14h53 |
Par Nathaniel Herzberg
Abonnez vous à partir de 1 € Réagir AjouterPartager (448)Tweeter
image: http://s2.lemde.fr/image/2017/05/21/534x0/5131343_7_45bb_au-laboratoire-nationale-du-gran-sasso-dans_3aebdea9ce6eb8e4901f2d30e91b5355.jpg
Au Laboratoire nationale du Gran Sasso, dans les Abruzzes (Italie), le détecteur, plongé dans son château d’eau, avec, à droite, le bâtiment de trois étages dévolu aux systèmes auxiliaires.
Encore raté ! Pour percer le mystère de la matière noire, les chercheurs devront encore attendre. La collaboration Xenon 1 tonne (Xenon1T), qui rassemble 135 chercheurs issus de 22 laboratoires à travers le monde, a annoncé ses premiers résultats. Et ils sont négatifs. Le détecteur sous-terrain installé dans le Laboratoire national du Gran Sasso, en Italie, n’est pas parvenu à attraper la capricieuse particule. Dans un article déposé, jeudi 18 mai, sur le site arXiv, avant une publication prochaine dans la revue Physical Review Letters, l’équipe détaille le dispositif qui ouvre, selon sa porte-parole Elena Aprile, « une nouvelle ère » dans cette quête fondamentale.
Une des énigmes les plus profondes de la physique. Depuis quatre décennies, les astrophysiciens ont mis en évidence un décalage fondamental entre leurs observations et la théorie. Les fameuses équations de Newton et Einstein ne permettent pas d’expliquer comment les étoiles tiennent dans les galaxies, ni comment ces dernières demeurent liées dans leurs amas. Rien que ça ! Pour remettre tout en place, les théoriciens ont conclu qu’il devait exister une matière invisible dont la force de gravitation servirait de ciment aux structures. Mais de quoi est-elle composée ? Comment agit-elle ? Comment prouver son existence ? Les scientifiques ont écarté la matière « baryonique », autrement dit celle qui compose tout ce que nous voyons, sentons, mesurons, du plus petit atome à la plus grande étoile. La particule cherchée serait d’une autre nature et n’interagirait pas avec la matière ordinaire – d’où sa « couleur » –, ce qui rendrait sa détection particulièrement délicate.
C’est à cette lourde tâche que de nombreuses équipes se sont attelées à travers le monde. Elles ont construit des détecteurs de plus en plus sensibles, de plus en plus gros. Et de plus en plus chers. Si bien qu’aujourd’hui, trois collaborations sont encore en lice. Les Américains de LUX et les Chinois de...
L’accès à la totalité de l’article est protégé Déjà abonné ? Identifiez-vous
image: http://s1.lemde.fr/image/2017/05/21/92x61/5131343_7_0baa_au-laboratoire-nationale-du-gran-sasso-dans_3aebdea9ce6eb8e4901f2d30e91b5355.jpg
Au Laboratoire nationale du Gran Sasso, dans les Abruzzes (Italie), le détecteur, plongé dans son château d’eau, avec, à droite, le bâtiment de trois étages dévolu aux systèmes auxiliaires.
La matière noire résiste au génie des chercheurs
La matière noire résiste au génie des chercheurs
Les premiers résultats de la collaboration internationale Xenon 1 Tonne viennent d’être publiés : le détecteur le plus sensible au monde n’a pas saisi la mystérieuse particule. A moins que…
LE MONDE SCIENCE ET TECHNO | 21.05.2017 à 18h02 • Mis à jour le 22.05.2017 à 14h53 |
Par Nathaniel Herzberg
Abonnez vous à partir de 1 € Réagir AjouterPartager (448)Tweeter
image: http://s2.lemde.fr/image/2017/05/21/534x0/5131343_7_45bb_au-laboratoire-nationale-du-gran-sasso-dans_3aebdea9ce6eb8e4901f2d30e91b5355.jpg
Au Laboratoire nationale du Gran Sasso, dans les Abruzzes (Italie), le détecteur, plongé dans son château d’eau, avec, à droite, le bâtiment de trois étages dévolu aux systèmes auxiliaires.
Encore raté ! Pour percer le mystère de la matière noire, les chercheurs devront encore attendre. La collaboration Xenon 1 tonne (Xenon1T), qui rassemble 135 chercheurs issus de 22 laboratoires à travers le monde, a annoncé ses premiers résultats. Et ils sont négatifs. Le détecteur sous-terrain installé dans le Laboratoire national du Gran Sasso, en Italie, n’est pas parvenu à attraper la capricieuse particule. Dans un article déposé, jeudi 18 mai, sur le site arXiv, avant une publication prochaine dans la revue Physical Review Letters, l’équipe détaille le dispositif qui ouvre, selon sa porte-parole Elena Aprile, « une nouvelle ère » dans cette quête fondamentale.
Une des énigmes les plus profondes de la physique. Depuis quatre décennies, les astrophysiciens ont mis en évidence un décalage fondamental entre leurs observations et la théorie. Les fameuses équations de Newton et Einstein ne permettent pas d’expliquer comment les étoiles tiennent dans les galaxies, ni comment ces dernières demeurent liées dans leurs amas. Rien que ça ! Pour remettre tout en place, les théoriciens ont conclu qu’il devait exister une matière invisible dont la force de gravitation servirait de ciment aux structures. Mais de quoi est-elle composée ? Comment agit-elle ? Comment prouver son existence ? Les scientifiques ont écarté la matière « baryonique », autrement dit celle qui compose tout ce que nous voyons, sentons, mesurons, du plus petit atome à la plus grande étoile. La particule cherchée serait d’une autre nature et n’interagirait pas avec la matière ordinaire – d’où sa « couleur » –, ce qui rendrait sa détection particulièrement délicate.
C’est à cette lourde tâche que de nombreuses équipes se sont attelées à travers le monde. Elles ont construit des détecteurs de plus en plus sensibles, de plus en plus gros. Et de plus en plus chers. Si bien qu’aujourd’hui, trois collaborations sont encore en lice. Les Américains de LUX et les Chinois de...
L’accès à la totalité de l’article est protégé Déjà abonné ? Identifiez-vous
image: http://s1.lemde.fr/image/2017/05/21/92x61/5131343_7_0baa_au-laboratoire-nationale-du-gran-sasso-dans_3aebdea9ce6eb8e4901f2d30e91b5355.jpg
Au Laboratoire nationale du Gran Sasso, dans les Abruzzes (Italie), le détecteur, plongé dans son château d’eau, avec, à droite, le bâtiment de trois étages dévolu aux systèmes auxiliaires.
La matière noire résiste au génie des chercheurs
Σχόλια